

Windows Server and SQL Server workloads on Azure laaS

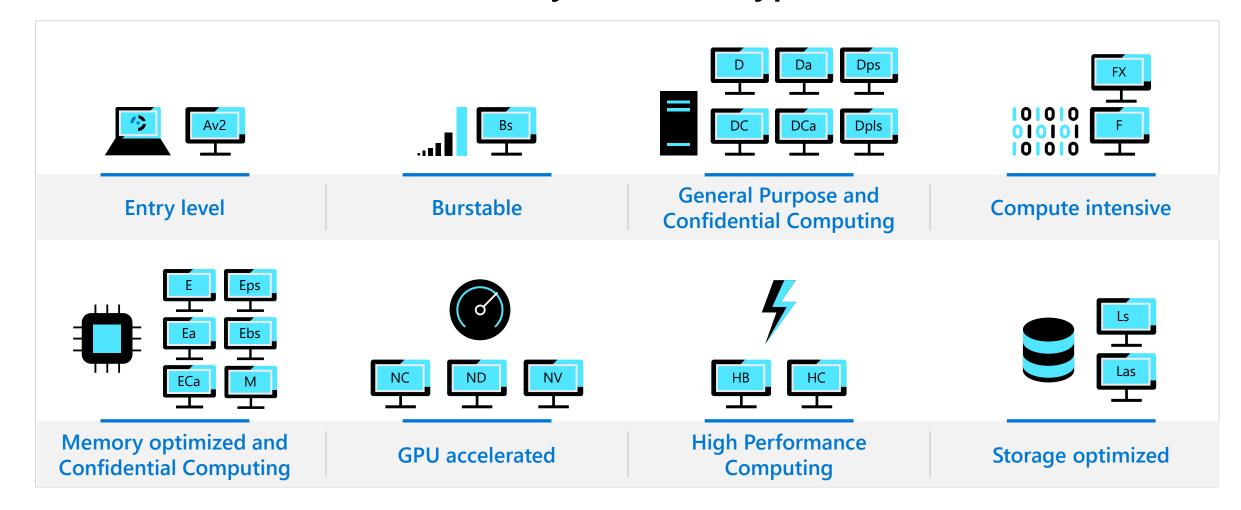
Bogdan Grozoiu & Joke Feije

Cloud Solution Architects

15th of November 2023

Contents

Windows Server workloads


- Azure core compute and storage options
- Latest offerings
- File sharing

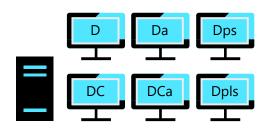
SQL Server workloads

- Azure core compute and storage options
- Latest offerings
- Benchmarking
- BCDR considerations

Azure core Compute options for Windows Server workloads

Azure Virtual Machines for every workload type

Azure VMs for general-purpose workloads

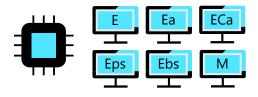


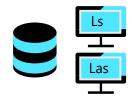
- Development and testing
- Low traffic web servers
- Proof-of-concepts
- Code repositories

Burstable

- Workloads not needing full CPU performance continuously
- Development build environments
- Proof-of-concepts

General Purpose


- Low-to-medium traffic web servers
- Application servers
- Small-to-medium databases
- Desktop virtualization solutions
- Enterprise-grade applications

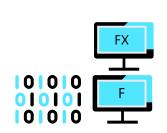


Azure VMs for memory/storage intensive workloads

Memory optimized

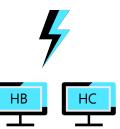
- Relational database servers
- Medium-to-large caches
- In-memory analytics
- OLTP systems

Storage optimized


- Big data applications
- SQL and NoSQL databases
- Enterprise search engines
- Data warehousing solutions
- Distributed file systems

Azure VMs for compute intensive and HPC workloads

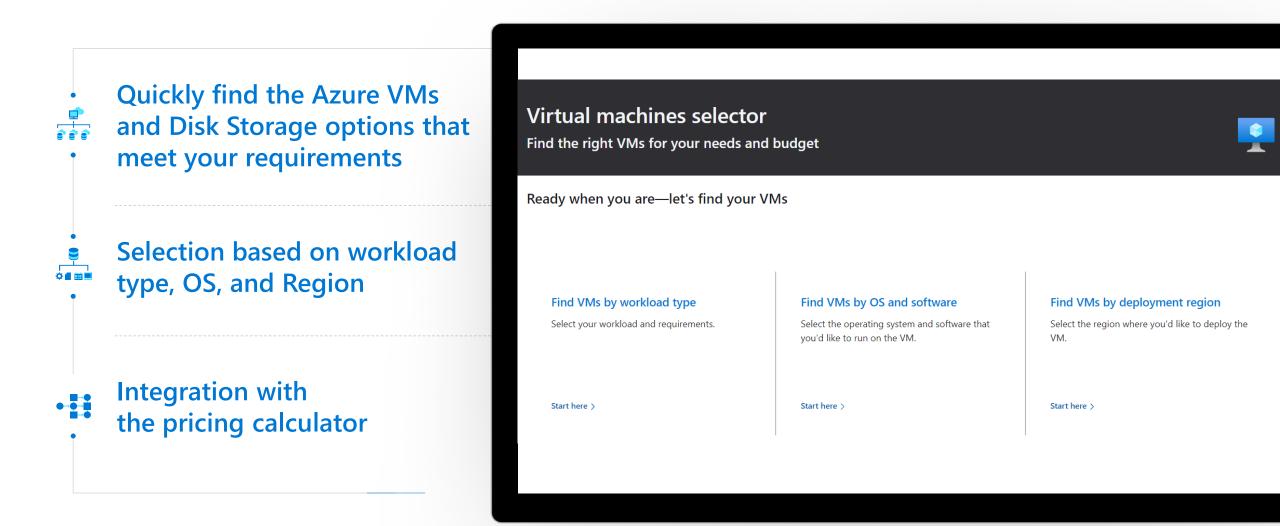
- Computationally intensive workloads
- Electronic Design Automation (FX)
- Video encoding and rendering
- Gaming



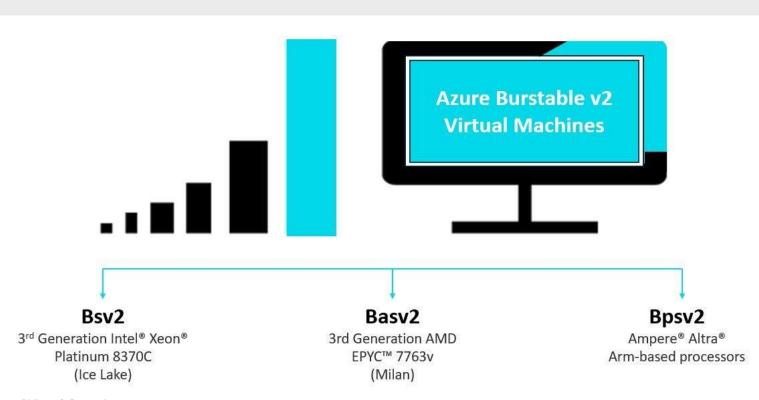
GPU accelerated

- Compute intensive, graphicintensive workloads
- Video editing
- Remote visualization, streaming, encoding, gaming
- ML, training and inference scenarios for deep learning

High Performance Computing


- Workloads requiring dense computation and memory bandwidth
- Finite element analysis
- Computational chemistry
- Molecular dynamics
- Fluid dynamics
- Reservoir simulations

Virtual Machines Selector



Latest Azure Virtual Machines

New Burstable General purpose VM sizes

Designed for non intensive workloads in a cost effective way

Bsv2 - Basv2 - Bpsv2 - Sizes

- Support all remote disk types such as Standard SSD, Standard HDD, Premium SSD and Ultra Disk storage
- Take advantage of Spot Virtual Machines, Reserved Instances and Saving Plan

New Intel memory-optimized VM sizes

Designed for data intensive workloads to process more data on fewer vCPUs

Ebsv5/Ebdsv5 – Sizes

- Up to 10 GBps and 400K IOPS
- Ebsv5-series VMs feature Intel® Hyper-Threading Technology
- Ideal for memory-intensive enterprise applications and applications that benefit from high remote storage performance but with no local SSD storage
- Supported only on Generation 2 VMs
- Initially available in the US East, Canada Central more regions to be added soon

Largest Ebsv5 sizes:

- E96bsv5
- E112ibsv5

Intel® Xeon®
Platinum 8370C
(Ice Lake)

Azure Boost VM family

Azure Boost VMs in preview can achieve **up to 200 Gbps networking throughput**, marking a significant improvement with a doubling in performance over other existing Azure VMs.

Achieve an industry leading **remote storage throughput** and **IOPS** performance of **10 GBps** and **400K IOPS** using NVMeenabled Premium SSD v2 or Ultra Disk options.

Isolated architecture inherently improves **security** by running storage and networking processes separately on Azure Boost's **purpose-built hardware** instead of running on the host server.

Reduced downtime needed to complete updates to Azure host infrastructure. Azure Boost's introduction means that Azure infrastructure updates can be deployed much faster by loading directly onto the Azure Boost hardware with minimal impact to customer running VMs on the host servers.

Public Preview Access Form

New storage optimized Lasv3 and Lsv3 VM series

Lasv3 VMs run on AMD 3rd Generation EPYCTM 7763v (Milan) processors.

Lsv3 VMs run on Intel 3rd Generation Xeon® Platinum 8370C (Ice Lake) processors.

Our tests of a data processing and analytics workloads demonstrated up to 2x higher performance of Lsv3/Lasv3 versus Lsv2 VMs.

Networking and remote storage throughput/IOPS will be increased up to 290% versus Lsv2.

Local storage (incl. NVME) is considered ephemeral, so use cases that can tolerate data loss and/or systems architected with redundancy / backup / replications will benefit from the L-series VMs performance.

Azure Storage options
For Windows Server
workloads

Storage recommendations for Windows Server workloads

Block storage for wide range of workloads

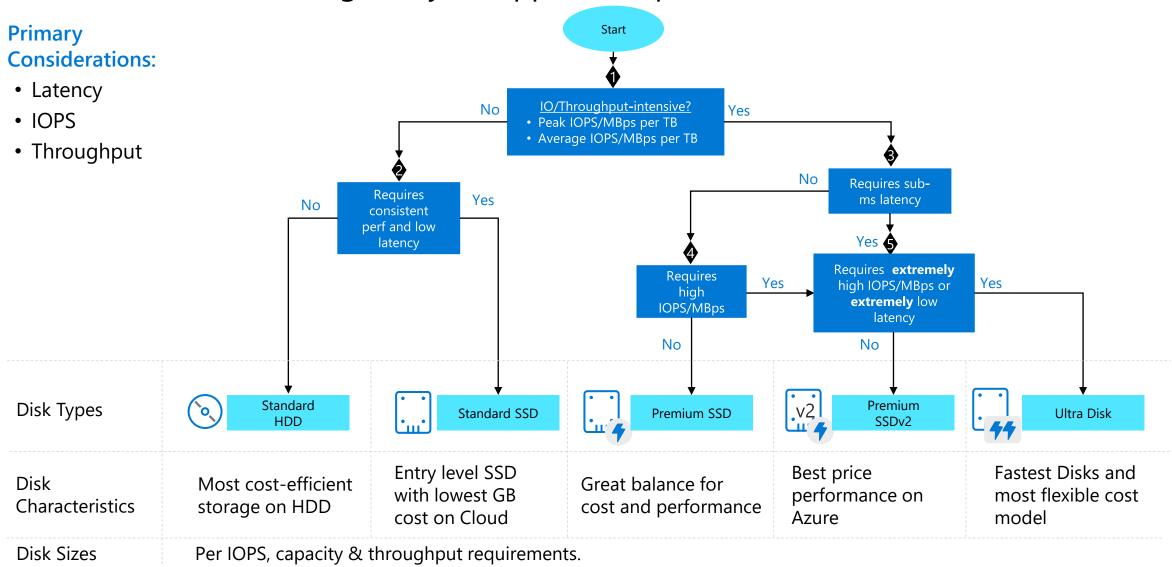
Shared disks for clustering

Recommended for file share migrations from Windows File Server SMB shares

Hybrid file shares /w Azure Files Sync Recommended for file share migrations requiring <2ms latency

Built-in backup support with Azure Backup

Built-in backup support through ANF


Azure Disk Storage for every Windows Server workload

		Recommended for production workloads •							
			Azure Disk – Optimized for Virtual Machines					Azure Elastic SAN (Preview)	
		Standard HDD Standard SSD Premium SSD Premium SSD v2 Ultra Disk			Elastic SAN				
			SSD SSD SSD		SSD SSD SSD		7	•	
				High performance	Sub-millisecond latency	Low sub- millisecond latency	Cost efficiency at scale		
	Workloads	Backups, low end file server, test and dev	Big Data, entry- level apps, small DBs, Web Servers	IO-intensive, database, production workloads, container volumes	SAP HANA, SAN, Tier-1 workloads	SAP HANA, SAN, Tier-1 workloads	Databases, V any Compute	2 workloads, DI hosted on options (VM, ers, AVS*)	
							Volume	SAN	
	Size	32 TiB	32 TiB	32 TiB	64 TiB	64 TiB	64 TiB	1 PiB	
	IOPS	2,000	6,000	20,000 (burst to 30,000)	80,000	160,000	64,000	2,000,000	
	Throughput	500 MB/s	750 MB/s	900 MB/s (burst to 1,000 MB/s)	1,200 MB/s	4,000 MB/s	1,000 MB/s	32,000 MB/s	
	Provisioning model	Performance scales with capacity	Performance scales with capacity	Performance scales with capacity	Flexible scaling at 1GiB granularity	Flexible performance scaling	Per GiB provisioning granularity	Flexible model at TiB granularity	

Single disk max value

Disk storage for Windows Server based workload migrations

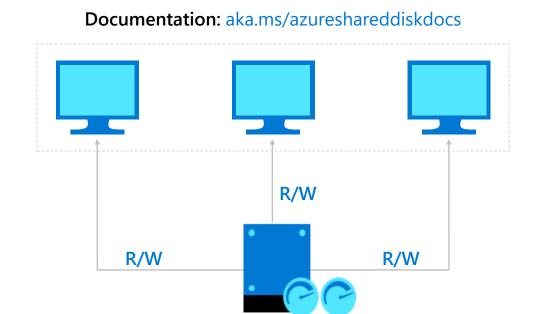
Choose Azure Disk Storage for your application performance needs

Industry-only support for Windows-based clustering with shared disks on Azure Disk Storage

Enables fast failover and high availability for clustered databases, parallel file systems and container volumes

Unique capabilities

Supports Windows-based scenarios


- <u>SQL Server FCI</u> (Failover Cluster Instance)
- Scale-out File Server (SoFS)
- <u>SAP ASCS/SCS</u> (SAP Central Services)
- Remote Desktop Server
- User Profile Disk RDS

Support for SCSI Persistent Reservations (PR) for:

Multi-Read + Multi-Write scenarios

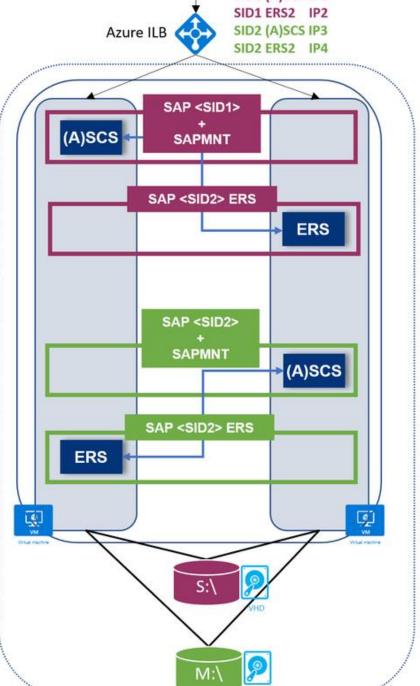
Ability to change disk properties after disk creation*

*All VMs need to be unmounted

Supported on Premium SSD, Premium SSD v2 and Ultra Disks

For single-write/multi-read scenarios, Ultra Disks offer ability to scale out horizontal – Enabling customers to provision additional read IOPS for secondary nodes

Watch this deep dive video to learn more about Azure shared disks



Azure Availability Set + PPG

Legend:

Azure shared disks

Create a managed disk								
Basics Encryption Networking Advanced Tags Review + create								
Add additional configurations for your managed disk								
Shared disk								
Allow this disk to be attached to two or more virtual machines, depending on storage type and disk size. When shared disk is enabled host caching is unavailable. Learn more about shared disks								
Enable shared disk Yes No								
Max shares ① 2								
On-demand bursting								
Allow this disk to burst beyond original provisioned target up to 30,000 IOPS and 1,000 Mbps. Learn more								
Enable on-demand bursting								
On-demand disk bursting is not supported with Shared disk. <u>Learn more</u>								
Data access authentication mode								
Allow Data Access with Azure Active Directory Authentication for disk upload/export. Learn more								
Enable data access authentication mode								

S:\usr\sap\<SID1>\SYS\...
S:\usr\sap\<SID1>\ASCS<Nr>\...

M:\usr\sap\<SID2>\SYS\...
M:\usr\sap\<SID2>\ASCS<Nr>\...

Azure Files – Tiers for Windows workloads

Easily Managed

No managing OS or hardware

Secure

Encryption in transit and at rest. AD DS, Entra DS and **Entra Kerberos** integration. Private endpoints to lock down network access.

Cross Platform

SMB, NFS access for Windows, Linux, and Mac as well as REST API.

Hybrid

Access directly from on prem or via Azure File Sync with onprem caching.

Standard: Recommended for General purpose 10s of ms latency, 10K IOPS, 300 MBps \$0.06/GB Used

Premium: Recommended for Performance Sensitive Low Latency, 100K IOPS, 10 GBps \$0.16/GB Provisioned

General Purpose & Hybrid Access

- Departmental file shares
- Hybrid shares with sync
- Home/user directories such as AVD
- Scratch folders
- Logs Store
- Config Files

DevOps & Backups

- Backups
- Dev/test
- Libraries
- CI/CD Pipeline
- Build Shares
- Tool Shares

Enterprise Apps

- Databases(SQL/MySQL)
- CRM
- LOB Applications
- Web content
- Containers
- Dev cloud platform

Performance sensitive

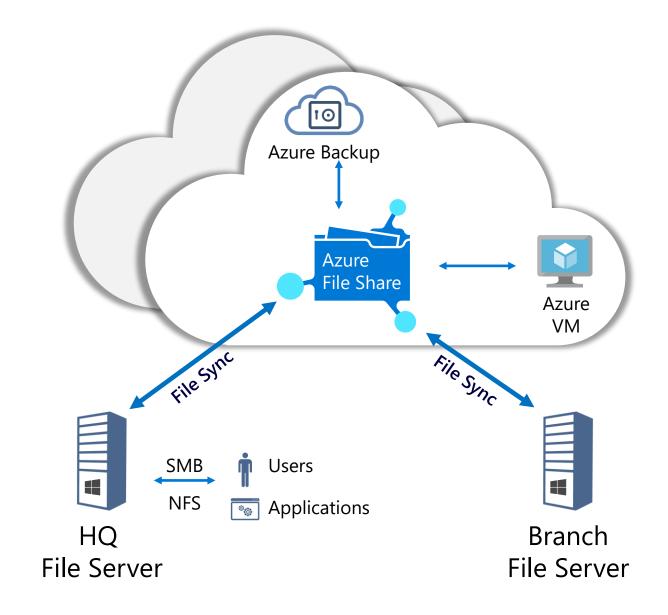
- Shared cache
- Media/analytics
- High variable/batch
- Content repositories

Hybrid Shares

via Azure File Sync

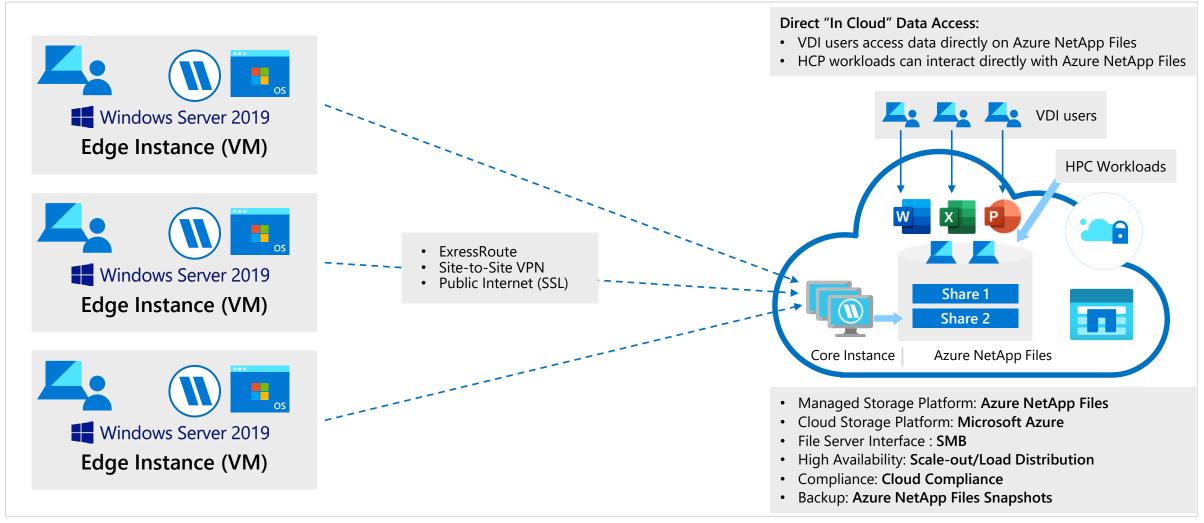
Zero Downtime Migration

Cloud Tiering


Cloud Access

Multi-Site Sync

Cloud Backup



Learn more about Azure File Sync

File Sharing on Azure NetApp Files

On-Premises

Run high-performance SQL Server workloads on Azure

Find the best Azure VM and Disk Storage configuration for your workloads in three steps

2

Select your **VMs** to match compute and I/O throughput needs

Choose from a wide variety of virtual machines. For SQL Server production workloads, depending on performance requirements, Ebs, Es, Eas, Ds, Das and Ms series Virtual Machines are **compatible** with Premium SSD, Premium SSD v2 and/or Ultra Disk Storage.

Ebs VM series delivers the best price-performance for SQL Server workloads.

1

Determine the requirements of your database workload

Evaluate the nature of your workload to determine the ideal configuration for SQL Server on Azure VMs.

IOPS, throughput, latency and storage size requirements are key decision factors.

You should understand your regional support and high availability requirements.

3

Select your **disks** based on storage requirements (I/O throughput)

Azure managed disks currently offers five disk types. Ultra Disk, Premium SSD v2 and Premium sold-state drives (SSD), offer the highest performance.

Ensure the VM series and disk type you select are **compatible** and meet your workload requirements.

SQL Server on Virtual Machines

Best price-performance VM series for OLTP and DW workloads that have a need for high I/O throughput

Up to 120,000 IOPS / 4,000 MB/s; 64 vCPUs, 512 GiB Memory

Ebs VM series

Large SQL Server databases that require high VM-to-Disk Storage IOPS and throughput.

Es and Eas VM series

Large relational databases for online transaction processing and business intelligence apps.

Suitable for most **enterprise**OLTP and DW production
workloads

Up to 80,000 IOPS / 2,600 MB/s 104 vCPUs 672 GiBs Memory*

Mission critical OLTP/DW workloads requiring a high vCPU and very large memory (highest mem-to-core ratio)

Up to 80,000 IOPS / 2,000 MB/s; 416 vCPUs, 12 TiB Memory

Ms VM series

Large in-memory business critical workloads requiring massive parallel computer power.

Ds and Das VM series

Small to mid-sized SQL Server databases for online transaction processing and analytics.

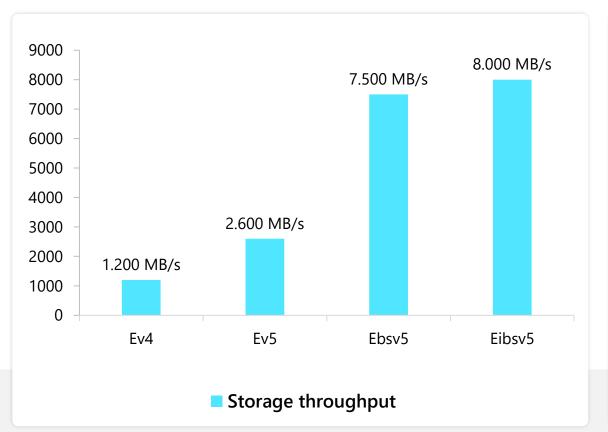
General purpose VM series for **small to mid-sized** OLTP or DW workloads (suitable for **Dev/Test**)

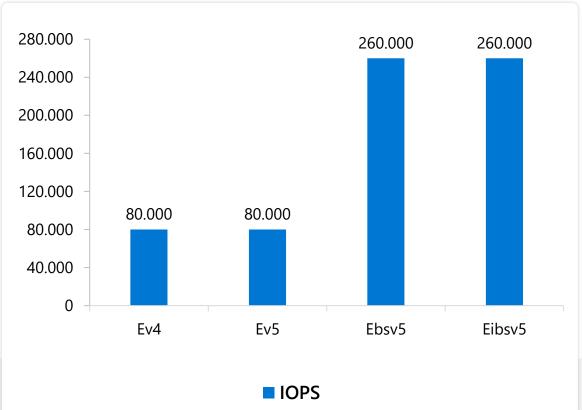
Up to 80,000 IOPS / 2,600 MB/s; 96 vCPUs, 384 GiB Memory

^{*}The isolated instance part of the Ev5 VM-series can deliver up to 4,000 MB/s and 120K IOPS

VM series optimized for data-intensive workloads

Up to 6X increase in remote storage performance compared to Ev4 VMs. Ideal for large databases and data analytics applications.




Ebsv5 and Ebdsv5 – Series

Memory intensive workloads requiring higher storage performance Up to 260,000 IOPS and 8,000 MB/s* of remote disk storage throughput.

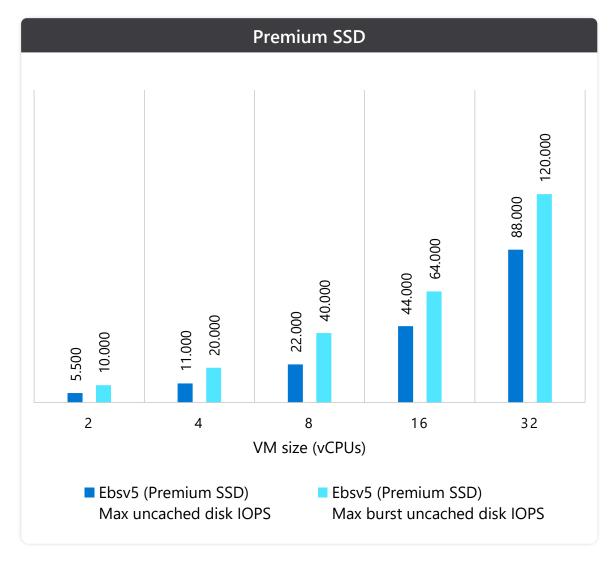
From 2 to 112i vCPUs featuring 3rd Generation Intel® Xeon® Platinum 8370C (Ice Lake)

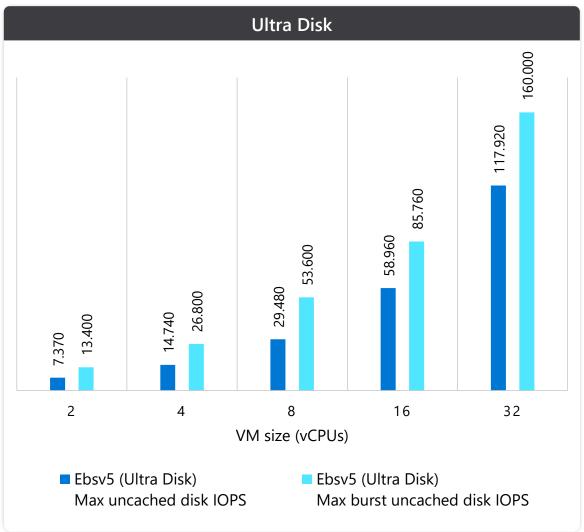
Increased VM-to-disk max storage throughput and IOPS comparison

Ebsv5 offers 3x more storage throughput and IOPS than Ev5 VMs and 6x more than Ev4 VMs

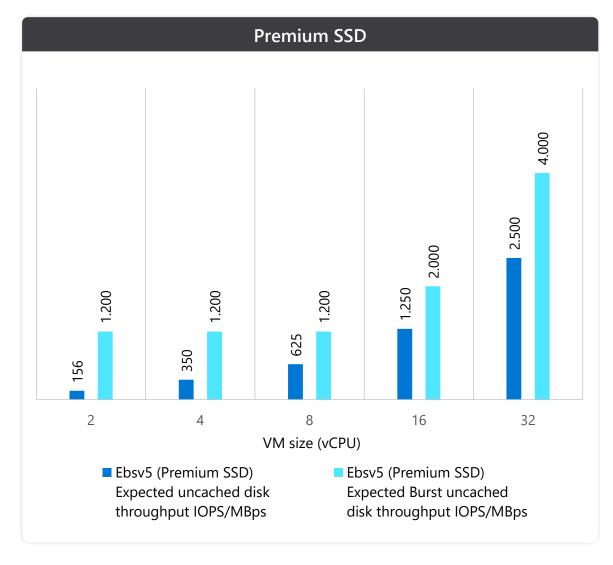
Ebsv5 Virtual Machines

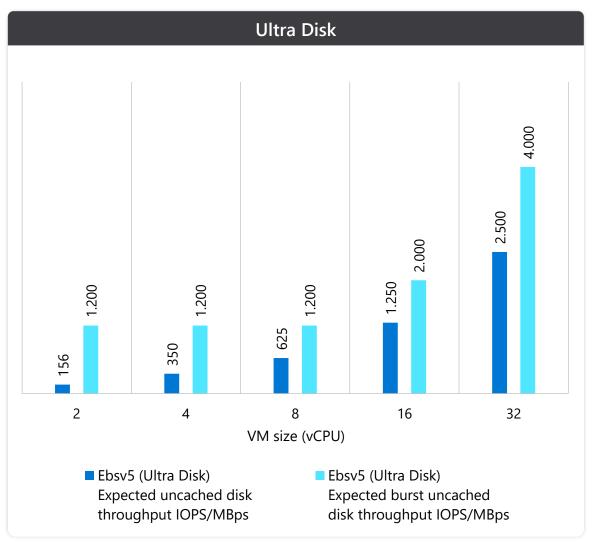
Ebsv5 series specifications with Premium SSD and Ultra Disks


Improved I/O to core ratio offers cost savings for existing constrained core customers.


From 2 to 112 vCPUs and Up to 672 GiB of RAM

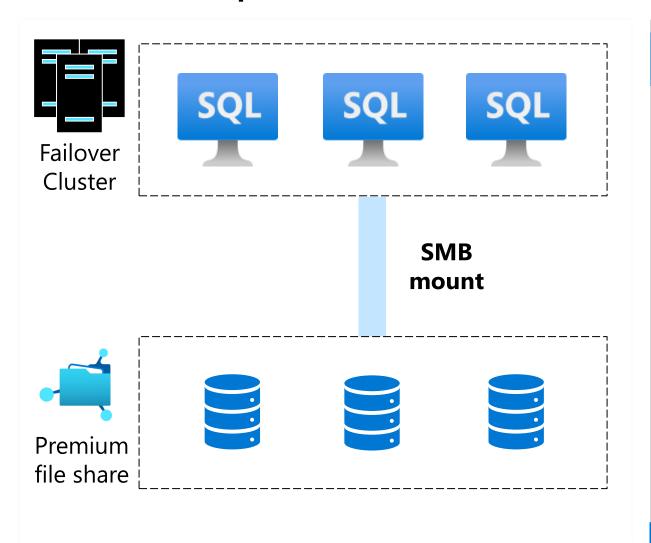
Generally Available: Sizes E2-64vCPU Public Preview: Sizes E96 and 112i


VM size (vCPU)	Ev5 (Premium SSD) Expected uncached disk IOPS/throughput (MBps)	Ebsv5 (Premium SSD) Expected uncached disk IOPS/ throughput (MBps)
8	12,800/290	22,000/625
16	25,600/600	44,000/1,250
32	51,200/865	88,000/2,500
48	76,800/1,315	120,000/4,000
64	80,000/1,735	120,000/4,000
96	80,000/2,600	260,000/7,500


Ebsv5-series burst capabilities (IOPS)

Ebsv5-series burst capabilities (Throughput)

New Ebsv5 VMs with better price-performance

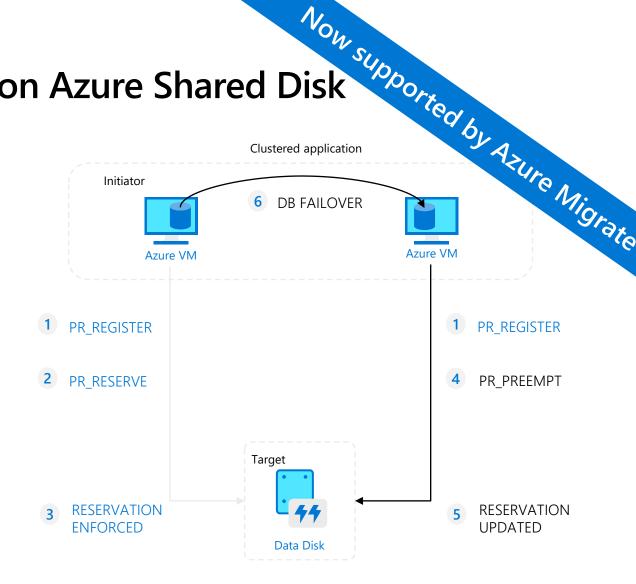

Factors E64s_v4		E48s_v5	E16bs_v5
Throughput Requirement 1200MBps	1,200MBps	1,315MBps	1,250MBps
Monthly Compute Cost (West US 2)	\$2,943.36	\$2,207.52	\$870.16
vCPU savings	N/A	16 vCPUs	48 vCPUs
Savings in comp	oute cost vs. Ev4	25%	70%

Azure Storage options For SQL Server

Azure Disk Storage for *every* SQL Server workload

		Recommended for production					workloads •	
		Azure Disk – Optimized for Virtual Machines					Azure Elastic SAN (Preview)	
		Standard HDD	Standard SSD	Premium SSD	Premium SSD v2	Ultra Disk	Elastic SAN	
		Low-cost storage	Consistent performance	High performance	Sub-millisecond latency	Low sub- millisecond latency		fficiency scale
	Workloads	Backups, low end file server, test and dev	Big Data, entry- level apps, small DBs, Web Servers	IO-intensive, database, production workloads, container volumes	SAP HANA, SAN, Tier-1 workloads	SAP HANA, SAN, Tier-1 workloads	Databases, \ any Compute	2 workloads, /DI hosted on e options (VM, ers, AVS*)
							Volume	SAN
	Size	32 TiB	32 TiB	32 TiB	64 TiB	64 TiB	64 TiB	1 PiB
	IOPS	2,000	6,000	20,000 (burst to 30,000)	80,000	160,000	64,000	2,000,000
	Throughput	500 MB/s	750 MB/s	900 MB/s (burst to 1,000 MB/s)	1,200 MB/s	4,000 MB/s	1,000 MB/s	32,000 MB/s
	Provisioning model	Performance scales with capacity	Performance scales with capacity	Performance scales with capacity	Flexible scaling at 1GiB granularity	Flexible performance scaling	Per GiB provisioning granularity	Flexible model at TiB granularity

SQL FCI with premium file shares



Key Benefits

- Fully managed storage with simple provisioning and management
- Scale up & down with zero downtime
 - Resize capacity and increase IOPS in seconds
 - Built-in bursting allows IOPS to triple for up to one hour
- Share storage & IOPS across many SQL servers.
- Zonal Redundancy
- Ideal for low to mid range performance requirements and larger databases
- Well suited when data capacity is growing fast, leading to regular resizing or variable IOPS needs
- Documentation: <u>aka.ms/PfsSqlFci</u>

SQL Server Failover Cluster Instance on Azure Shared Disk

- Preferred storage for SQL Server FCI implementations
- Enables lift and shift of on-premises deployments
- Built for Windows Server/SQL Server 2008+
- Leverages Windows Server Failover Cluster (WSFC) for cluster management/disk arbitration
- Supports Premium SSD, Premium SSD v2 or Ultra Disk
- Supports disk/cloud/fileshare witness
- Supports disk striping via Windows Server Storage Spaces for performance
- Supports Availability Sets
- Supports zonal redundancy in select regions

FAILOVER CLUSTER

Step-by-step tutorial to configure SQL Server FCI with Azure Shared Disk

Azure NetApp Files for Windows Servers and SQL Workload

	RECOMMENDED for File Shares	RECOMMENDED for Database an		
	Standard	Premium	Ultra	
	Throughput comparable to mainstream HDD	Throughput comparable to mainstream SSD	Throughput comparable to high end Flash Arrays	_
Throughput	16MiB / s per 1TiB	64MiB / s per 1TiB	128MiB / s per 1TiB	Up to 4,500MiB / s per volume
IOPS (4K I/O size)	4,000 per 1TiB	16,000 per 1TiB	32,000 per 1TiB	Up to 375,000 IOPS per volume
Price	\$ 0.15 per GiB / month	\$ 0.30 per GiB / month	\$ 0.40 per GiB / month	

		•		
D.	ייוב	10	rm	nt
	- 1	ıv		

SMB 3.1, SMB 2.1, NFS v4.1 and NFS v3

SMB 3.1 multichannel w/ receive-side-scaling (RSS)

High availability: 99.99% SLA

Simple to Manage

Provision bare-metal-based volumes in minutes
Instantaneous snapshots & restore
Cross region volume replication
Built-in backup to object storage through ANF

Secure and compliant

FIPS-140-2 data encryption at rest

RBAC, AD authentication, and export policies for network-based ACLs

HIPAA, FedRamp High/Commercial, FedRamp High US Gov, SOC, IRAP, ISO (27001, 27017, 27018,27701), IL4/IL5 US Gov, HITRUST, PCI DSS

Azure NetApp Files SMB Performance: learn more here

Deploy SQL on Azure NetApp Files: learn more <u>here</u>

SQL Server on laaS Benchmarking

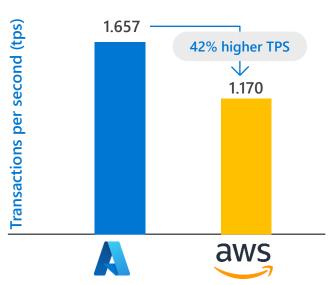
SQL Transaction Processing and Analytic Performance Price-Performance Testing v1.0

Microsoft SQL Server Evaluation: Azure vs. Amazon Web Services

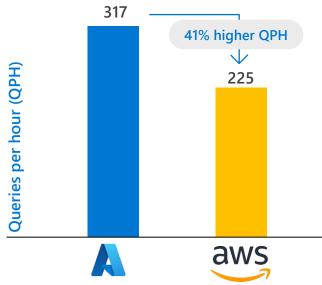
Cloud	AWS Azure			
Database	SQL Server 2019 Enterprise on Windows Server 2019 Datacenter SQL Server 2019 Enterprise Windows Server 2022 Datacenter			
Build*	Microsoft SQL Server 2019 (RTM-CU12) (KB5004524) - 15.0.4153.1 (X64) Jul 19 2021 15:37:34 Enterprise Edition: Core-based Licensing (64-bit) Windows Server 2019 Datacenter 10.0 <x64> (Build 17763) (Hypervisor)</x64>	Microsoft SQL Server 2019 (RTM-CU15) (KB5008996) - 15.0.4198.2 (X64) Jan 12 2022 22:30:08 Enterprise Edition: Core-based Licensing (64-bit) Windows Server 2022 Datacenter 10.0 < X64> (Build 20348) (Hypervisor)		
Region	Oregon	North Central US		
Instance Type	r5b.8xlarge	E32bds_v5		
vCPU	32	32		
RAM (GiB)	256	256		
Storage Configuration	5x 2TB gp3 (14,733iops 420MB/s) data 1x 1TB gp3 (10,000iops 200MB/s) log 1x 0.5TB gp3 (3000iops 200MB/s) root	16x P30 1TB (5,000iops 200MB/s) data (read-only cache); 2x P30 1TB (5,000iops 200MB/s) log (no cache)		
Total IOPS	86,667 90,000			
Source: GigaOm 2022				

Benchmarks

- Gigaom Transactional Field Test Derived from TPC BenchmarkTM E (TPC-E), simulates brokerage with central database. Data model consists of 33 tables, 27 of which have 50 foreign key constraints. Database scaled to 1 million customers.
- Gigaom Analytical Field Test Informed by the TPC Benchmark[™] H (TPC-H) spec validation queries


Test setup

- Gigaom Transactional Field Test SQL VM E32bds_v5 vs AWS EC2 r5b.8xlarge. 3 test runs, min 2 hrs each, avg tps from the last 30 min of the test runs
- Gigaom Analytical Field Test SQL VM E32bds_v5 vs AWS EC2 r5b.8xlarge. 3 test runs, captured best result overall


SQL Server on Azure Virtual Machines meets your mission-critical requirements up to 42% faster than AWS EC2

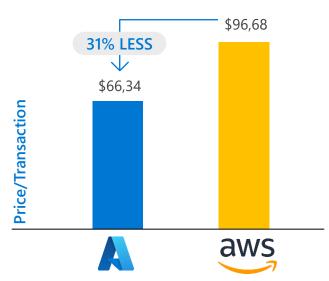
SQL Server on Azure VM vs SQL Server on AWS EC2
GigaOm Transactional Field Test
Azure E32bds_v5 vs AWS EC2 r5b.8xlarge
April 2022

Database performance comparison. Higher is better.

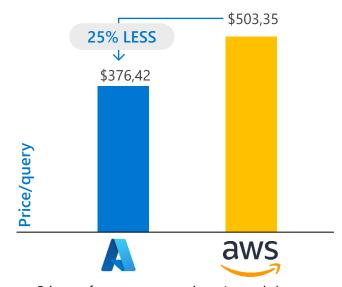
Read the **full report** from GigaOm

Source: GigaOm

Price-performance claims based on data from a study commissioned by Microsoft and conducted by GigaOm in April 2022. The study compared price performance between SQL Server 2019 Enterprise edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with Garage with Garage E42bds_v5 instance type r5b.8xlarge with G42bds_v5 instance type r5b.8xlarge with G42bds_v5 instanc


The GigaOm Transactional Field Test derived from a recognized industry standard, TPC Benchmark™ E (TPC-E). The Field Test does not implement the full TPC-E benchmark and as such is not comparable to any published TPC-E benchmarks.

The GigaOm Analytics Field test derived from the TPC-H Benchmark. The field test does not implement the full TPC-H benchmark and as such is not comparable to any published TPC-H benchmarks.


SQL Server on Azure Virtual Machines meets your mission-critical requirements – Costing up to 31% less than AWS EC2

SQL Server on Azure VM vs SQL Server on AWS EC2
GigaOm Transactional Field Test
Azure E32bds_v5 vs AWS EC2 r5b.8xlarge
April 2022

SQL Server on Azure VM vs SQL Server on AWS EC2
GigaOm Analytics Field Test
Azure E32bds_v5 vs AWS EC2 r5b.8xlarge
April 2022

Price performance comparison. Lower is better. Includes Azure Hybrid Benefit + 3-vr commitment

Price performance comparison. Lower is better. Includes Azure Hybrid Benefit + 3-yr commitment

Read the **full report** from GigaOm

Source: GigaOm

Price-performance claims based on data from a study commissioned by Microsoft and conducted by GigaOm in April 2022. The study compared price performance between SQL Server 2019 Enterprise edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Azure E32bds_v5 instance type with Garage E42bds_v5 instance type with G42bds_v5 instance type with G42bd

The GigaOm Transactional Field Test derived from a recognized industry standard, TPC Benchmark™ E (TPC-E). The Field Test does not implement the full TPC-E benchmark and as such is not comparable to any published TPC-E benchmarks.

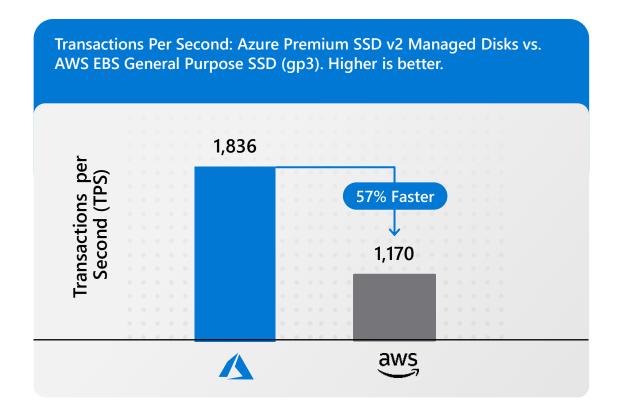
The GigaOm Analytics Field test derived from the TPC-H Benchmark. The field test does not implement the full TPC-H benchmark and as such is not comparable to any published TPC-H benchmarks.

SQL Transaction Processing and Analytic Performance Price-Performance Testing v1.0

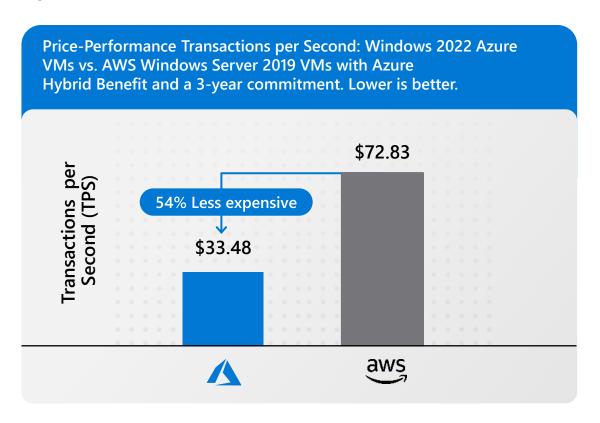
Microsoft SQL Server Evaluation: Azure vs. Amazon Web Services

Cloud	AWS	Azure
Database	SQL Server 2019 Enterprise on Windows Server 2019 Datacenter	SQL Server 2019 Enterprise on Windows Server 2022 Datacenter
Build*	Microsoft SQL Server 2019 (RTM-CU12) (KB5004524) - 15.0.4153.1 (X64) Jul 19 2021 15:37:34 Enterprise Edition: Corebased Licensing (64-bit) Windows Server 2019 to Windows Server 2022 Datacenter 10.0 <x64> (Build 17763) (Hypervisor)</x64>	Microsoft SQL Server 2019 (RTM-CU18) (KB5017593) - 15.0.4261.1 (X64) Sep 28 2022 Enterprise Edition: Core-based Licensing (64-bit) Windows Server 2022 Datacenter 10.0 <x64> (Build 20348) (Hypervisor)</x64>
Region	Oregon	East US
Instance Type	r5b.8xlarge	E32bds_v5
vCPU	32	32
RAM (GiB)	256	256
Storage Configuration	5x 2TB gp3 (14,733iops 420MB/s) data 1x 1TB gp3 (10,000iops 200MB/s) log 1x 0.5TB gp3 (3000iops 200MB/s) root	Premium SSD v2 2x 1TB (60,000 iops 1,200 MB/s) data + 1X 1TB (10,000 iops 120 MB/s) log
Total IOPS	86,667	130,000
Source: GigaOm 2023		

Benchmarks

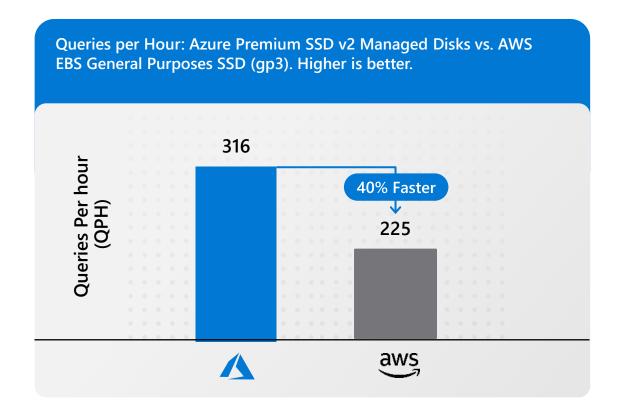

- GIGAOM TRANSACTIONAL FIELD TEST derived from TPC Benchmark[™] E (TPC-E), simulates brokerage with central database. Data model consists of 33 tables, 27 of which have 50 foreign key constraints. Database scaled to 1 million customers.
- GIGAOM ANALYTICAL FIELD TEST informed by the TPC BenchmarkTM H (TPC-H) spec validation gueries

Test setup

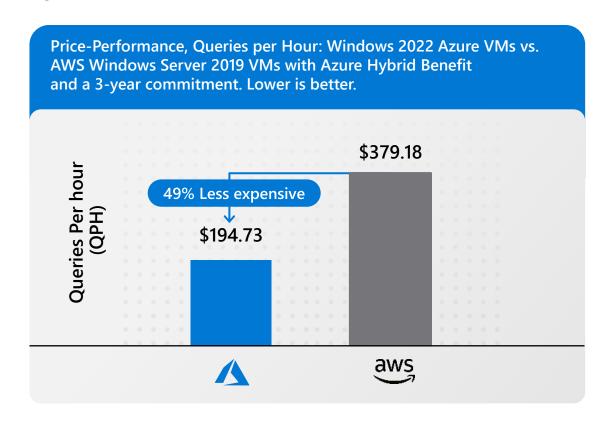

- GIGAOM TRANSACTIONAL FIELD TEST SQL VM E32bds_v5 vs AWS EC2 r5b.8xlarge. 3 test runs, min 2 hrs each, avg tps from the last 30 min of the test runs
- GIGAOM ANALYTICAL FIELD TEST SQL VM E32bds_v5 vs AWS EC2 r5b.8xlarge. 3 test runs, captured best result overall

SQL Server on Azure Virtual Machines meets your mission-critical requirements up to 57% faster than AWS EC2

SQL Server on Azure Virtual Machines meets your mission-critical requirements – costing up to 54% less than AWS EC2



*Price-performance claims based on data from a study commissioned by Microsoft and conducted by GigaOm in January 2023


Price-performance claims based on data from a study commissioned by Microsoft and conducted by GigaOm in January 2023. The study compared price performance between SQL Server 2022 Enterprise edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Amazon Web Services Elastic Cloud Compute instance type r5b.8xlarge with General Purpose (qp3) volumes. Benchmark data is taken from two tests:

The GigaOm Transactional Field Test derived from a recognized industry standard, TPC Benchmark™ E (TPC-E). The Field Test does not implement the full TPC-E benchmark and as such is not comparable to any published TPC-E benchmarks.

SQL Server on Azure Virtual Machines meets your mission-critical requirements up to 40% faster than AWS EC2

SQL Server on Azure Virtual Machines meets your mission-critical requirements – costing up to 49% less than AWS EC2

*Price-performance claims based on data from a study commissioned by Microsoft and conducted by GigaOm in January 2023

Price-performance claims based on data from a study commissioned by Microsoft and conducted by GigaOm in January 2023. The study compared price performance between SQL Server 2022 Enterprise edition on Windows Server 2022 in Azure E32bds_v5 instance type with P30 Premium SSD disks and SQL Server 2019 Enterprise Edition on Windows Server 2022 in Amazon Web Services Elastic Cloud Compute instance type r5b.8xlarge with General Purpose (gp3) volumes. Benchmark data is taken from two tests:

The GigaOm Transactional Field Test derived from a recognized industry standard, TPC Benchmark™ E (TPC-E). The Field Test does not implement the full TPC-E benchmark and as such is not comparable to any published TPC-E benchmarks.

Backup SQL Server databases running in Azure VM

App-consistent backups are generated using managed disk snapshots and/or stream-based backups based on the RPO/RTO

ALL databases

(including SQL Server)

Use Azure VM backup solution to generate Application-consistent snapshot backups.

(Auto) coordination with VSS to quiesce all VSS-aware apps (databases)

Database specific pre/post-scripts to be written by the user to freeze and thaw the application.

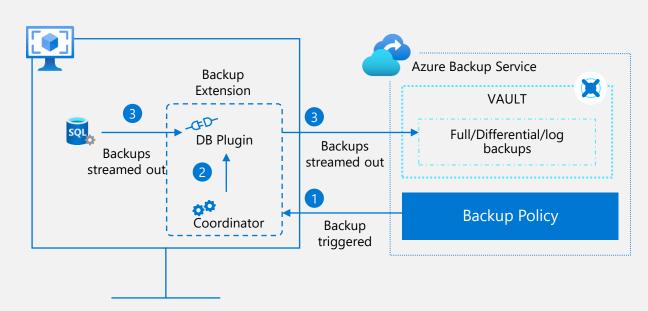
Use specially devised end-to-end backup solution for better RPO and RTO (recommended for production workloads)

High fidelity stream-based backups: Full / copy-only Full / differential / incremental / log backups are streamed using VDI stream for SQL and 'backint' for HANA.

Self service restores with 15 mins RPO: Trigger point-in-time restores, without having to manually apply a chain of logs over differential and full backups.

Database level protection: Granular control with database level backup/restores with an option to automatically protect all the **existing** and incoming DBs in a server.

Long-term retention in standard or archive tier: Retain backups for 10 years+ with recovery points getting pruned automatically by the **built-in lifecycle management**, while maintaining dependencies amongst backups.


Restore anywhere: Restore as .bak files to a network share to port the backup data across Azure subscriptions or regions and even to an onprem server.

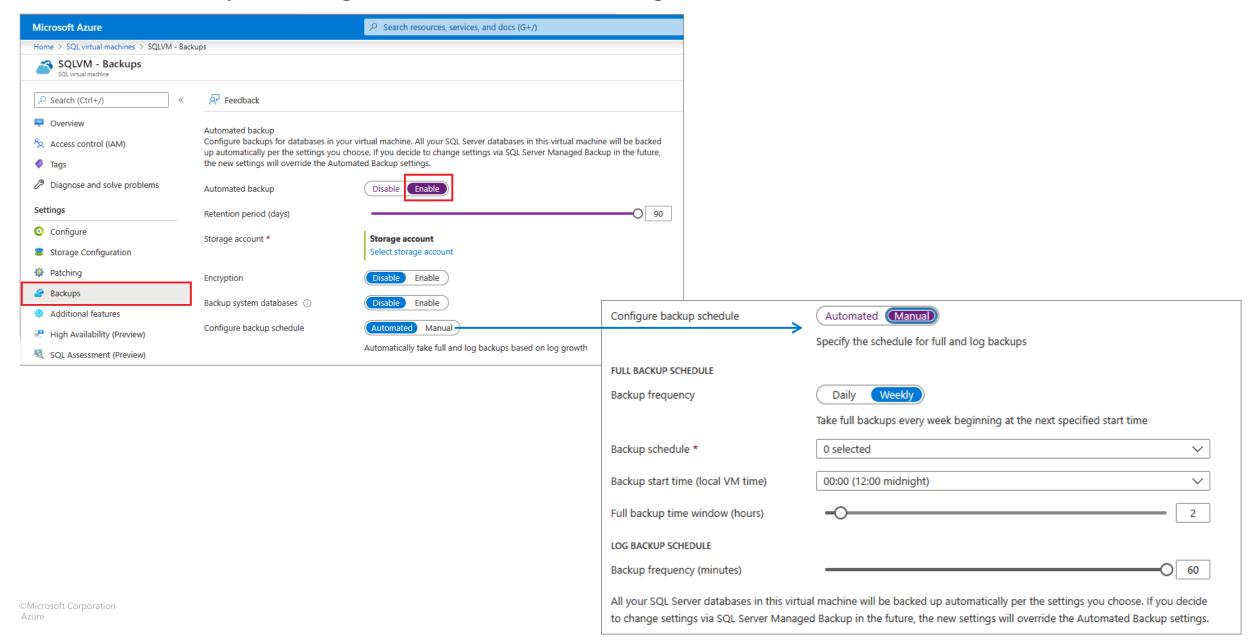
Backup Databases in Azure VM | Stream-based

Backups are streamed out from the database engine and written to the Azure Backup managed storage.

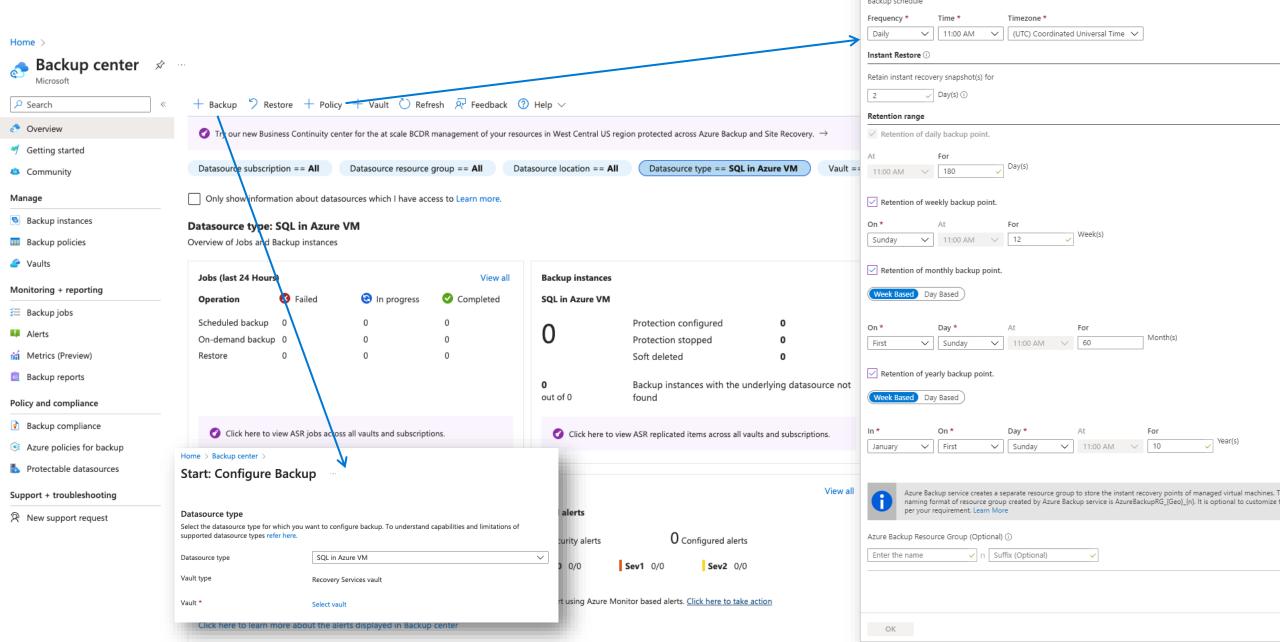
	SQL Server	
Supported DB and OS versions	SQL Server 2008 and aboveWindows Server 2008 R2 and above	
Supported deployment	 Standalone Azure VMs, SQL Always on availability group SQL FCI – To be added soon 	
*Performance	200 MBps	
Key call outs	 All recovery models SQL native compression TDE encrypted DBs backup In-built checksum used SQL sys-admin permission required for backups 	

^{*}The actual speed depends on the underlying disk(s) and VM throughput along with the number of backups running at a time.

- The backup extension gets temporary access to write to specific blobs. In this way, even in a compromised environment, existing backups can't be tampered with or deleted by the guest.
- Stream-based db backup solution should not be used along with any other backup solution to prevent Isn breaks. However, Azure VM backup can be used along with them


SQL VM backup- Demo Video

Backup options for SQL Server in Azure VMs


While Azure Backup is an enterprise-class backup solution that comes at a 'backup' management price, there are other backup solutions in Azure as well. It is recommended that you compare the capabilities amongst them and pick the one that meets your requirements the best.

Capability	Automated Backup (Managed Backup)	Azure Backup	Manual Backup (inc. Backup to URL)
DB and OS versions supported	SQL Server 2014 and above	SQL Versions: All Win version: 2008 (64 bit), 12, 16, 19	All (inc. SQL on-prem)
Max DB Size	12 TB	 6TB-8TB for stream-based backups ~50TB for snapshots 	No Limit (12.8 TB for Backup to url)
Max Retention	30 days	10 years+ (with Archive tier support)	No Limit (with archive tier)
Availability Group Awareness	No	Yes	Configurable
RPO	5 min	15 min	No Limit
Pricing	Storage fee only	Backup management fee + Storage consumed	Storage fee only
(out of the box) Central management and monitoring	No	Yes	No
Available interface/tools	Azure Portal, ARM, PS, CLI	Azure Portal, PS	T-SQL, SSMS
Granularity (backup and restore)	SQL Server instance level	 SQL database level Backup can also be configured at server level with option to Restore individual DBs. 	SQL database level

Automated Backup → Storage Account (SQL VM Setting)

Azure Backup → Backup Vault (Azure Backup Center Configuration)

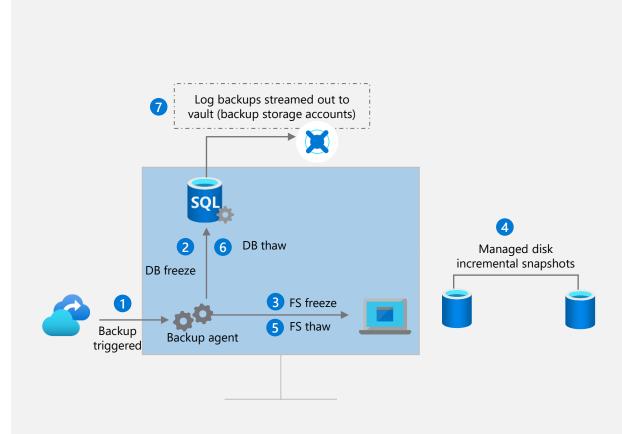
Backup policy

Policy name * (i)

Backup Databases running in Azure VM | Snapshot-based

Large databases are effectively backed up using a combination of app-consistent, managed-disk incremental snapshots along with the log backups

Recommended for large databases (6-8 TB+) to make backup a low performance impacting activity and improve backup and restore speeds.


Snapshots happen in a matter of seconds and since they are incremental in nature, they ensure cost efficiency.

Snapshots provide instant restore where disks could be created immediately from snapshots stored in the customer's subscription and then attached to the target VM.

Log backups (streamed every 15 mins) are applied on top of these restored snapshots.

Extend your BCDR strategy with our trusted partner ecosystem

Backup data/apps to Azure as an offsite

Eliminate storage/tapes on-premises

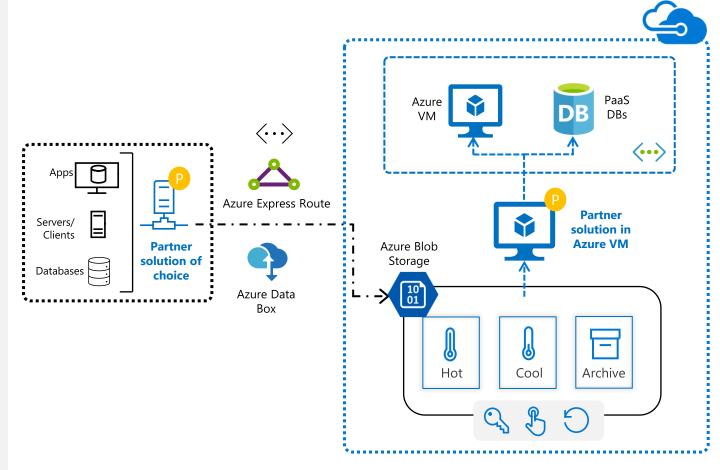
Backup securely to Azure with online and offline mechanisms

Store cost-effectively in Azure Storage

Store data on durable and secure Azure Blob Storage for \$1/TB Scale to PBs of data, when you need it

Optimize for cost and RTO with **Hot, Cool, Cold or Archive** tiers Save up to 40% on long-term retention with Reserved Capacity pricing

Use Azure as a cost-effective DR site


Restore data & apps to Azure (Failover) during DR
Orchestrate DR Drills without provisioning infrastructure
Clone on-premises production environments for test/dev scenarios

Migrate and protect in Azure

Migrate data & apps to **Azure VMs or as PaaS** resources Use the same solutions in Azure to protect migrated resources

Stay compliant

90+ built-in compliance offerings across industries

Our trusted partner ecosystem

and many more ...

Resources

Azure Disk Storage homepage: Azure Disk Storage

Azure Disk Storage documentation: Introduction to Azure managed disks (Shared disks, zone-redundant storage, disk bursting)

Azure Elastic SAN homepage: <u>Azure Elastic SAN (preview)</u>

Azure Elastic SAN documentation: What is Azure Elastic SAN? (preview)

SQL Server on VM with Premium SSD v2

disks GigaOm Report:

GigaOM Price Performance Report

Azure Disk deep dive videos:

Azure Disk Storage

Azure Files homepage: Azure Files

Azure Files documentation:

Azure Files documentation

Azure NetApp Files homepage: Azure NetApp Files

Azure NetApp Files documentation:

Azure NetApp Files documentation

Azure NetApp Files solution architectures

Azure Backup homepage: Azure Backup

Azure Backup documentation:

Azure Backup service documentation

SQL Migration Guidance: SQL Migration Guidance documentation

Windows Server Migration Guidance: Windows Server Migration Guidance documentation

Best practices for SQL Server on Azure VMs: Checklist: Best practices for SQL Server on Azure VMs

Thank you.